$[>$ restart $;$ $[>$

Use ideal gas equation of state to determine the specific volume of air in the cylinder
$>v:=$ combine $\left(\frac{R_{\text {specific, air }} T 0}{p}\right.$, 'units' $)$;

$$
\begin{equation*}
v:=\frac{R_{\text {specific, air }} T 0}{p} \tag{1}
\end{equation*}
$$

(air intake mass per crank revolution:
$>$ mAir $:=$ combine $\left(\frac{V}{v}\right.$, 'units' $\left.^{\prime}\right) ;$

$$
\begin{equation*}
m \text { Air }:=\frac{V p}{R_{\text {specific, air }} T 0} \tag{2}
\end{equation*}
$$

energy stored in air per crank revolution,
minus energy removed due to vaporization of a certain mass of water per crank revolution, minus the energy required to heat up that mass of water from its original temperature to the new intake temperature:
$>$ eAir $:=$ mAir T0 $c_{p, \text { air }}-m$ Water $\Delta H_{\text {vap, water }} ;$

$$
\begin{equation*}
\text { eAir }:=\frac{V p c_{p, \text { air }}}{R_{\text {specific, air }}}-m \text { Water } \Delta H_{\text {vap, water }} \tag{3}
\end{equation*}
$$

with the above calculated air energy, calculate new air temperature:
$>$ eq1 $:=T 0+\Delta T=\frac{\text { eAir }}{m \text { Air } c_{p, \text { air }}}$;
eq1 $:=T 0+\Delta T=\frac{\left(\frac{V p c_{p, \text { air }}}{R_{\text {specific, air }}}-m \text { Water } \Delta H_{\text {vap, water }}\right) R_{\text {specific, air }} T 0}{V p c_{p, \text { air }}}$
$\overline{=}>\Delta T:=\operatorname{simplify}\left(\operatorname{solve}\left(e q 1,{ }^{\wedge} \Delta T^{`}\right)\right)$;

$$
\begin{equation*}
\Delta T:=-\frac{T 0 R_{\text {specific, air }} m \text { Water } \Delta H_{\text {vap, water }}}{V p c_{p, \text { air }}} \tag{5}
\end{equation*}
$$

$\overline{=}>c_{p, \text { air }}:=1.0035 \mathrm{e} 3 \llbracket J \rrbracket \llbracket k g \rrbracket^{-1} \llbracket K \rrbracket^{-1} ;$

$$
\begin{equation*}
c_{p, \text { air }}:=\frac{1003.5 \llbracket J \rrbracket}{\llbracket k g \rrbracket \llbracket K \rrbracket} \tag{6}
\end{equation*}
$$

$\overline{=} c_{p, \text { water }}:=4.1813 \mathrm{e} 3 \llbracket J \rrbracket \llbracket k g \rrbracket^{-1} \llbracket K \rrbracket^{-1} ;$

$$
\begin{equation*}
c_{p, \text { water }}:=\frac{4181.3 \llbracket J \rrbracket}{\llbracket k g \rrbracket \llbracket K \rrbracket} \tag{7}
\end{equation*}
$$

$\overline{=}>\Delta H_{\text {vap, water }}:=2257 \mathrm{e} 3 \llbracket J \rrbracket \llbracket k g \rrbracket^{-1} ;$

$$
\begin{equation*}
\Delta H_{\text {vap, water }}:=\frac{2.25710^{6} \llbracket J \rrbracket}{\llbracket k g \rrbracket} \tag{8}
\end{equation*}
$$

$\left\lceil>R_{\text {specific, air }}:=287.04 \llbracket J \rrbracket \llbracket k g \rrbracket^{-1} \llbracket K \rrbracket^{-1}\right.$

$$
\begin{equation*}
R_{\text {specific, air }}:=\frac{287.04 \llbracket J \rrbracket}{\llbracket k g \rrbracket \llbracket K \rrbracket} \tag{9}
\end{equation*}
$$

displacement per crank revolution -- divide by two as this is a four-stroke engine

$$
\begin{align*}
& >\mathrm{V}:=\frac{1.9 \mathrm{e}-3 \llbracket m \rrbracket^{3}}{2} ; \\
& =\text { assumed pressure in cylinder } \tag{10}\\
& >p:=2.0 \cdot 100035 \mathrm{~Pa} \rrbracket ; \\
& =
\end{align*}
$$

express water mass in terms of flow \mathbf{j} (mass over time) and crank velocity ω (1 over time)
$>m$ Water $:=\frac{j}{\omega} \llbracket k g \rrbracket ;$
ω

$$
\begin{equation*}
m \text { Water }:=\frac{j \llbracket k g \rrbracket}{\omega} \tag{12}
\end{equation*}
$$

$>\operatorname{simplify}(\Delta T)$;

$$
\begin{equation*}
T 0:=373 \llbracket K \rrbracket \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
-1.26695111510^{6} j \llbracket K \rrbracket \tag{14}
\end{equation*}
$$

ω

